◆まず、7数字全部が当たる確率・・・「7to6」で買って1等2等総取りになる場合ですね^^
普通にロト6で1等が当たる確率 |
「7to6」で買って1等2等総取りになる確率 |
全ての組合せは?
(43×42×41×40×39×38)÷(6×5×4×3×2×1)=6,096,45 |
全ての組合せは?
(43×42×41×40×39×38×37)÷(7×6×5×4×3×2×1)
=32,224,114 |
従って・・・1/6,096,45って事になります。 |
従って・・・1/32,224,114って事?・・・すげっ |
ガッカリしました?・・・・まぁ絶対に当たらないと思いましたか?でも信じましょうね当てるんですから。f^^;) ポリポリ
◆では、第一〜第七数字までの理論出現確率表です。
→実際の出現分布表と比較してみると良いでしょう。1パーセント以下は四捨五入してあります。
% |
01 |
02 |
03 |
04 |
05 |
06 |
07 |
08 |
09 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
@ |
16 |
14 |
12 |
10 |
9 |
7 |
6 |
5 |
4 |
3 |
3 |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
A |
|
2 |
4 |
5 |
6 |
7 |
7 |
7 |
7 |
7 |
6 |
6 |
5 |
5 |
4 |
4 |
3 |
3 |
2 |
2 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
B |
|
|
0 |
1 |
1 |
2 |
3 |
3 |
4 |
5 |
5 |
5 |
6 |
6 |
6 |
6 |
6 |
5 |
5 |
5 |
4 |
4 |
3 |
3 |
3 |
2 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
C |
|
|
|
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
3 |
3 |
4 |
4 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
4 |
4 |
3 |
3 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
|
|
|
D |
|
|
|
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
3 |
3 |
3 |
4 |
4 |
5 |
5 |
5 |
6 |
6 |
6 |
6 |
6 |
5 |
5 |
5 |
4 |
3 |
3 |
2 |
1 |
1 |
0 |
|
|
E |
|
|
|
|
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
3 |
3 |
4 |
4 |
5 |
5 |
6 |
6 |
7 |
7 |
7 |
7 |
7 |
6 |
5 |
4 |
2 |
|
F |
|
|
|
|
|
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
2 |
2 |
3 |
3 |
4 |
5 |
6 |
7 |
9 |
10 |
12 |
14 |
16 |
※1以上の数値が入っている部分だけで、98〜99%カバー出来ます。
※0と表示されている部分も出現する可能性は有りますが、無視しても問題ない位のパーセンテージです。
※背景色が黄色の部分が各ライン(第一〜第七数字)で一番出るはずの数字です。
◆更に・・・グラフ化してみました。 →視覚的にイメージをつかめると思います。
|